

Brown trout:

Genetic diversity and its implications for management and conservation

Andy Ferguson

Professor Emeritus, School of Biological Sciences, Queen's University Belfast

Outline of talk

- Brown trout distribution & nomenclature
- Origins of genetic diversity
- Examples of genetic diversity colouration, morphology and <u>life history</u> (migration, reproduction, feeding)
- Importance of genetic diversity
- Conservation & management

current native trout distribution

©Schöffmann 2013

Brown trout Salmo trutta sensu lato

- Brown trout common name for native trout
 - Some use brown trout only for <u>freshwater trout</u>,
 sea trout being used for <u>sea-migratory trout</u>
 - Similar to use of rainbow trout, in freshwater, steelhead, for sea-migratory, in North America
- Eurasian trout may be more inclusive name in spite of a few populations in N. Africa
 - Will use brown trout in the broad sense or simply 'trout'

One species or many?

- Many local common names referring to particular geographical types / ecotypes etc
- Breac, spotted trout, speckled trout, ferox, gillaroo, sonaghen (an), dollaghen (an), salmon-trout, buddagh, croneen, white trout, bull trout, slob trout, lake trout, harvester
- Some argue for multiple species
 - 19th C 50+ species
 - Early 20th C 1 species
 - 2017 40+ species e.g. Kottelat *et al*

BT widely introduced worldwide

- Introduced to North America & many countries in southern hemisphere
- In New Zealand e.g. of considerable importance for angling

Very high variability / diversity

- The adjectives that best describe brown trout are 'variable' / 'diverse'
- BT is one of the most variable vertebrates
 - Klemetsen (2013) claims Arctic charr to be most variable vertebrate species

- geographic range, migration, habitat, adult size, colour, body form, polymorphism, diet, reproduction, genetics
- Scores rainbow trout & brown trout a bit lower but I would argue with some of the scoring

Much variation present in Ireland

- This diversity presents a considerable challenge for conservation and management
- 'One size fits all' approach not appropriate
 - Actions must be tailored to an individual catchment and its populations
- To what extent are genes responsible for observable (phenotypic) variation in life history & other key biological traits

Phenotypic variation can be due to

- Environmental plasticity same genotype producing different phenotypes in different environments i.e. no genetic variation
- 2. Gene variants (alleles) directly determine the variation - no environmental influence
 - Simple Mendelian inheritance
 - Genotype = phenotype

3. Multiple genes combined with environmental influences – continuous & threshold (quantitative) traits

Nature & nurture as for many of our own traits

Genotype

Environment

How is genetic variability studied

- Variation in **phenotype**
 - Colouration, life history including migrations, feeding, longevity, body structure, physiology, environmental tolerance, disease and parasite resistance, etc
- Natural communal environment situations /'common garden' experiments can be used to identify genetic components

Direct studies of genes (genotype)

- Molecular techs DNA, RNA & proteins
 - 45+ years small number (<50) of genetic markers
 eg. allozymes, mitochondrial DNA, microsatellites
 - Markers for spatial population structuring, movements, mixed-stocks analyses, etc
- Recent years have seen development of genome wide (genomic) studies
 - Many thousands of genes, often known function
 - Adaptive variation, life history determinants, etc

Postglacial colonisation

- Recolonisation from glacial refuge areas after glaciers retreated (c14,000 – 10,000 years ago)
 - Several refugia
 adjacent to Britain
 & Ireland due to
 lower sea level

- Colonisation by at least 6 lineages from various parts of NW Europe

 – evolved there during all or part of the ice age
- Several lineages colonised same lake / river at different times
 - lineages mixed by interbreeding in some places but remained distinct in others due to breeding only with members of same lineage

Natal homing

- Adults return to river region of birth for spawning with considerable accuracy
- Results in population structuring even in the absence of physical barriers
 - i.e. separate populations in different tributaries or sub-tributaries
- As populations are the unit of production this population structuring needs to be recognised in conservation & management

Homing allows local adaptation

- Separate populations acquire adaptations to local conditions by **natural selection**
- Local adaptation increases survival & reproductive success (i.e. increases <u>fitness</u>)
- Small populations subject also to random genetic changes (i.e. genetic drift)

Genetic diversity today result of

- 1. Postglacial colonisation by multiple lineages
- Changes in individual populations since colonisation as a result of natural selection and genetic drift, due to both natural and human-mediated changes
- Illustrate 1 & 2 by studies on Lough Melvin trout

Lough Melvin

gillaroo

sonaghen

Colonised as 3 genetically distinct lineages

ferox

Melvin catchment, NW Ireland

1 mile

Differences among sonaghen spawning rivers as a result of natal homing

Spatial population structuring

- Significant genetic differentiation between samples from different locations indicates distinct populations, potentially with different adaptations
- Although differences may be small, taken cumulatively over 20+ marker systems they can be sufficient to identify trout taken in the lake as to their river of origin – mixed-stocks analysis / Genetic Stock Identification (GSI)

Brown trout shows considerable colour variation

Trout from 5 lakes in SW Scotland within a maximum of 10 miles apart

How far is this variation simply the result of environmental differences?

Parent Lake 1

F5 Lake 2

F5 Lake 3

Reared from eggs and stocked in small lakes in Belfast area

Morphology - Head & fin measurements, gill raker length and number of teeth most discriminatory

Life history variation

Three interlinked aspects

- Migration / residency
- Reproduction
- Feeding
- Characterisation of the range of life history types and habitats utilized by trout within a catchment is increasingly recognized as a prerequisite for effective conservation and management

Resident trout

- <u>River resident</u> staying within general area where born – eg where good adult feeding in spawning tributaries or impassable barrier (eg waterfall) preventing upstream return
- <u>Lake resident</u> where entire life cycle is spent in lake (although may be inshore-offshore movement)
 - Within lake spawning probably more common than currently known

Within lake spawning

- Upland lakes diffusive drainage into lake, windy conditions, waterfall at outlet
- Melvin gillaroo

- Lough Mask (P. Gargan pers. comm.Ryan et al. 2016)
- Further studies required to establish extent in large lowland loughs

Migrations

- Migration is movement between discrete spawning, adult feeding and refuge habitats
 - Regular periodicity within life span
 - Directed movement rather than random or passive drift
- Most trout in Ireland are migratory

Migratory trout

- 1. Migration from spawning tributary to main stem of river (fluvial potamodromous)
- 2. Migration from spawning river to lake (adfluvial potamodromous)
 - Numerically commonest LH in Ireland and most important for angling – 12,000+ loughs
- Migration from spawning river to sea (sea trout anadromous)

Why are sea trout considered differently from other migratory trout?

- Legislation treats sea trout differently
- Sea trout is simply one migratory tactic and does not differ fundamentally from the other migratory types
 - Main difference is that ionic & osmoregulatory changes are required when moving between freshwater & sea- water

- Recent study (Leitwein et al 2017) on rainbow trout / steelhead found same Migration
 Associated Genes in lake-migratory as in seamigratory, but not resident trout
 - Indicative of same genetic control for both types of migration & independent genetic control of migration and physiological changes

 Silvering is also found in lake-feeding trout – it is simply open water camouflage

Not about size either

- Piscivorous lake trout (ferox) in Britain & Ireland are larger than sea trout
 - GB record rod-caught lake trout
 - ferox (L Awe) 32³/₄lb

- GB record rod-caught sea trout (S. England) 28¼lb
- Ireland ferox L. Ennel 26 lb
- Ireland river trout R. Shannon 20lb
- Ireland sea trout R. Shimna 16½ lb

- Some individuals can change migratory pattern alternating between sea and a lake
 - In Loch Lomond trout repeatedly move between the lake and estuarine / marine environments
- All native freshwater trout in Ireland derived in last 14,000 yrs from sea trout ancestors
 - At end of last ice age no freshwater connection to rest of Europe

Inlet & outlet spawning

- Lake migratory trout are of two groups
 - Inlet river spawners
 - Outlet river
- Outlet spawning relatively common
- Requires different direction of parr migration
 - Experiments have shown this to be genetically determined
 - Forms a local adaptation

Direction of parr migration

L Fleet – inlet & outlet populations

 L Fleet re-established by stocking 1988+ but now shows genetically distinct inlet river and outlet river populations

 Reproductive isolation and genetic divergence acquired within c8 generations since stocking took place

All can be present in one river system with a lough

Obligate vs facultative migration

- In some small spawning streams all trout migrate, often in first summer (obligatory migration)
- In larger spawning rivers some individuals in the population migrate while others complete their entire life cycle as residents - facultative (optional) migration

Benefits / costs of migration

- Better feeding in main river / lake / sea larger body size giving
 - More eggs eggs buried deeper, less overcutting
 - Improved competition for mates
- Greater risk of predation
- Higher energy costs of migrations & physiological changes required for sea

Should I stay or should I go?

- The decision for a juvenile trout in its natal river is 'Should I stay or should I go?' i.e. remain in the river until maturity or migrate to the main stem of the river / a lake / the sea
- Decision is informed by **both** its <u>physiological</u> (nutritional) condition and by its <u>genes</u> as influenced by relative success of migration for its ancestors, through natural selection

But where to migrate to – main river, lake or sea?

- Must be largely genetically determined
 - Direct movement to ultimate location
 - Repeatable over generations
 - In sea trout physiological changes necessary for water & ionic regulation start to occur in river
- Natural selection can change
 - Dams have resulted in change from migrating to sea to migrating to a lake instead

Inherited map of migration route

Age & timing variation

- Within each category of migration there is considerable variation in the age / time of year that both outward & return occurs
- Age & timing has been shown to be under genetic control
- Single gene variation explains 39% in age of maturity of Atlantic salmon – same gene likely in trout as well

Feeding variation

- Trout are often generalist feeders
- In some lakes, individual trout specialise on one of three main food groups
 - Specialisation allows greater feeding efficiency by adaptations of gill rakers, teeth, head structure etc
 - Requires stable conditions & lack of competitors to evolve

Lake trout feeding ecotypes

- Primarily bottom feeding
 - Macroinvertebrates
- Primarily open-water feeding

- Zooplankton

- Fish eating large size <u>ferox</u> trout
 - Charr, pollan, roach, perch

- Two or three feeding ecotypes found in many lakes with suitable conditions
- The extent to which this segregation occurs in Irish lakes merits investigation
 - Requires detailed netting survey at range of depths
 - The gillaroo phenotype was reported in the past in a number of loughs as well as Melvin, e.g. Neagh, Conn, Mask, Corrib.
 - A gene unique to gillaroo in Melvin has been found in trout from L. Conn

- Feeding segregation can occur as a result of colonisation by different lineages already adapted to particular food resources.
- Alternatively it can occur within a lake, with or without reproductive isolation of the ecotypes.

Piscivorous trout - ferox

 Ferox are genetically distinct from other trout in 6 lakes studied

- Ferox are genetically more similar to each other, in different lakes, than they are to the co-occurring trout of their own lake
- Thus derived from a common lineage in lakes studied to-date – piscivory innate

Experimental populations

- On their own in a lake both gillaroo & sonaghen widened feeding spectrum
- Only gillaroo fed on snails although apparently similarly available in both lakes

– Genetic basis?

Loch Harray (Orkney)

Heritable basis to most, if not all, life history & other diversity in trout

- If we loose the underlying genetic variation we loose this life history diversity
- Life history diversity results in fuller use of environmental resources and thus greater productivity (more fish) than fixed LH
- Insurance policy if one life history fails greater long-term stability for the population / species

 'portfolio effect'
- Gives diversity of angling opportunity, techniques and interest

Maintenance of life history diversity requires

- Full range of appropriate habitats
 - spawning, nursery, feeding and refuge habitats
- Requires trout to be able to move freely downstream and upstream
 - no barriers
 - sufficient water flow

Genetic diversity determines the abundance of trout

- Genetic components to survival & reproduction (fitness) which directly influence number of trout
- Reduced population size results in loss of genetic diversity and inbreeding with consequent inbreeding depression and loss of fitness (i.e. fewer young produced)

- 80% reduction in survival in inbred rainbow trout

- Genetic diversity is important in allowing trout to continue to adapt to changing environmental conditions e.g. global warming and new diseases
- Important for practical management
 - In SW Scotland, trout in one lake survived even at pH4, while others in the area became extinct
 - Genetically based tolerance of low pH
 - Offspring used to stock and restore populations in lakes where trout became extinct due to acidification

Integral component of biodiversity

- Genetic diversity among trout populations is an integral component of biodiversity – Governments have statutory duty to protect
 - Trout genetic diversity has arisen over past 2 million years
 - Once lost cannot be regained (in meaningful time period)

Loss of genetic diversity

- Any loss of a population, or reduction in population numbers results in the loss of genetic diversity
- Supplemental stocking with fertile domesticated trout or even with hatchery reared offspring derived from native broodstock can also result in detrimental genetic changes

Supplemental stocking

- Interbreeding between wild trout and stocked ones can result in
 - Reduced survival and reproductive capacity
 - Changes in life histories
- Can result in fewer trout than if no stocking
- Fortunately <u>fertile</u> domesticated farm trout supplemental stocking no longer permitted in most jurisdictions

But why is the use of native broodstock a problem?

 Hatchery environment very different from wild & rearing - can result in behavioural, physiological and genetic changes which adversely impact future survival, life history tactic and reproduction

- Epigenetics - heritable changes in gene expression

 Often does not take account of natural population structure – mix broodstock from different populations / life histories

Native broodstock schemes last resort

- Native broodstock schemes should only be used when there is a clearly identified problem (bottleneck) limiting number of trout produced
 - Problem cannot be solved in short-term
- High survival in hatchery does not result in high life time survival!
 - Overall life time survival, & reproduction, may be lower than if left to breed naturally

Conclusions

- While substantial progress has been made in our understanding of genetic diversity in brown trout, many challenges remain
 - Recent molecular & statistical methodology make further understanding within reach
- Requires full integration of molecular genetic analyses with field & experimental studies
 - Genetics should be integral part of, not separate, from conservation & management activities