

National Eel Monitoring Programme, 2012-2014

Dr. Paddy Gargan, Dr. Ciara O'Leary, Dr. Robert Cruikshanks Dr. Russell Poole

Reasons for Programme

- Fulfill monitoring objectives as outlined in National Management Plan
 - Monitoring of recruitment (glass eel / elvers)
 - Monitoring of yellow eel
 - Monitoring of silver eel
- Create a benchmark to evaluate future changes to the eel stock over time and
- allow the outcome of the management actions to be evaluated

Monitoring Objectives

In 2009 the eel monitoring programme was initiated to carry out the monitoring Objectives in the National Management Plan.

- 2. Estimate silver Eel Escapement (with ESB, NUIG, M.I)
 - Barrow, Burrishoole, Erne, Fane, Shannon systems
 - 2.1 Estimate silver eel escapement indirectly using yellow eels
 - Intensive fyke netting surveys: 13 surveys of 5 lakes, 5 surveys of 2 transitional waters
 - 2 catchment wide semi quantitative electrofishing surveys
- 3. Monitor the impact of fishery closure on yellow eel stock structure
 - CPUE, Age and growth studies (n = 2,057)
- 4. Inter-Calibration with Water Framework Sampling
 - 2011 2013: 77 lakes, 198 river sites, 15 transitional waters

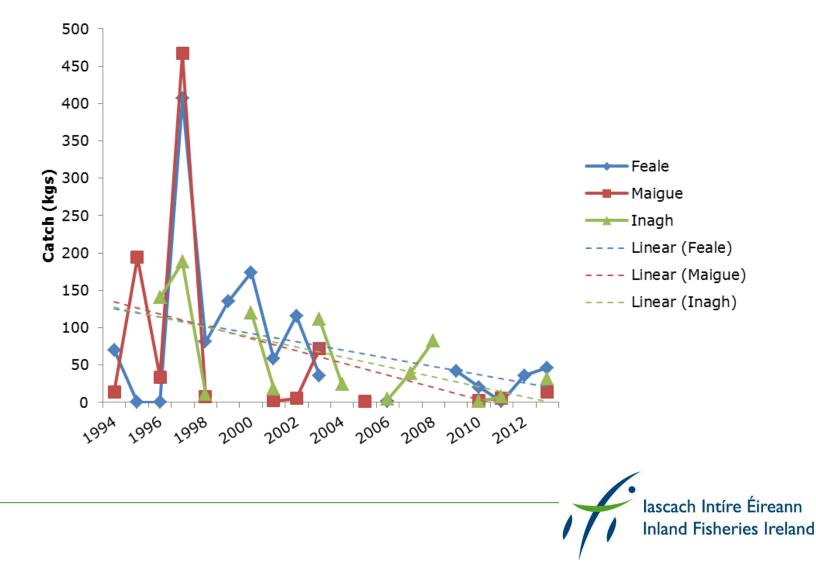
Monitoring Objectives

- 5. Compare current and historic brown eel stocks
 - Fisheries Research Centre fyke net surveys 1960's to 1990's.
 - Lough Conn, Derg, Ree, Oughter, Upper Lough Erne, Upper and Lower L. Corrib and Barrow,
- 6. Establish baseline data to track changes in eel stock over time
 - Elver monitoring programme
 - Intensive Fyke Net surveys & Catchment Wide E/fishing Surveys
 - WFD programme
- 7. Evaluate impedance of upstream colonisation: migration and water quality effects.
- 8. Determine parasite prevalence and eel quality
 - Distribution, prevalence & intensity of Anguillicola crassus, (swimbladder parasite)
 - Swimbladder Health Indices assess damage

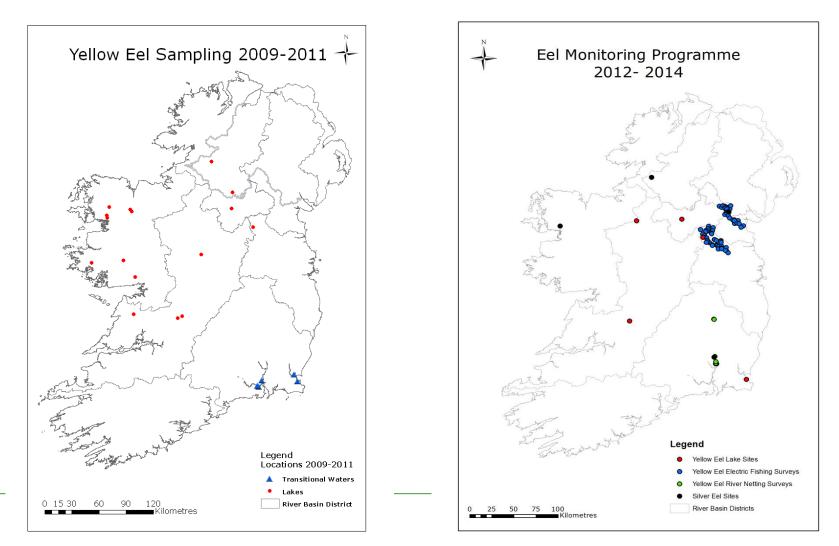
Recruitment

Recruitment

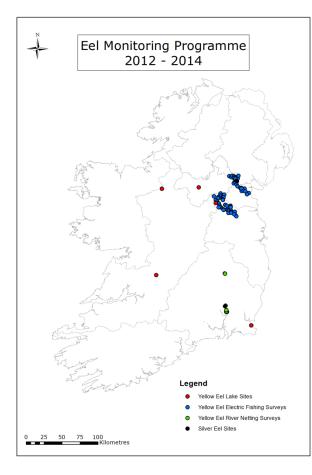
- Biological monitoring of traps
 - aimed at giving an indication of the recruitment into a river
 - Located around the country
 - Natural annual fluctuations due to environmental conditions
 - Long-term data series to capture general trend
 - Aim: to observe and record change in recruitment as a result of the management measures implemented


Elver Ramp Traps

National Elver Monitoring traps: Top left to right; Ballysadare, Inagh and Liffey. Bottom left to right: Feale, Corrib and Maigue

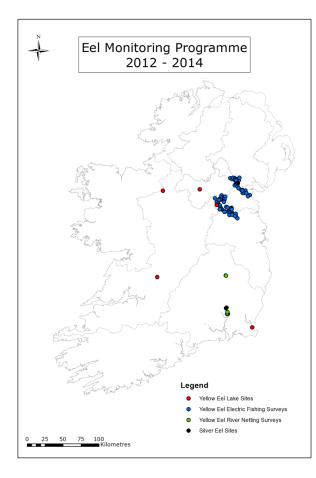


Long-Term Recruitment Trend 1994 - 2014

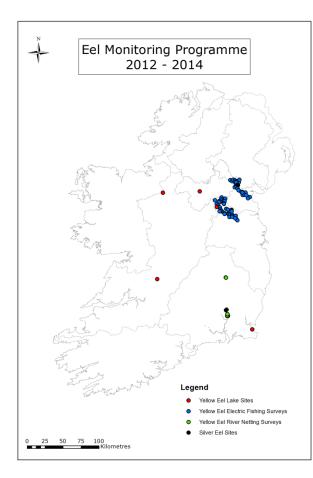


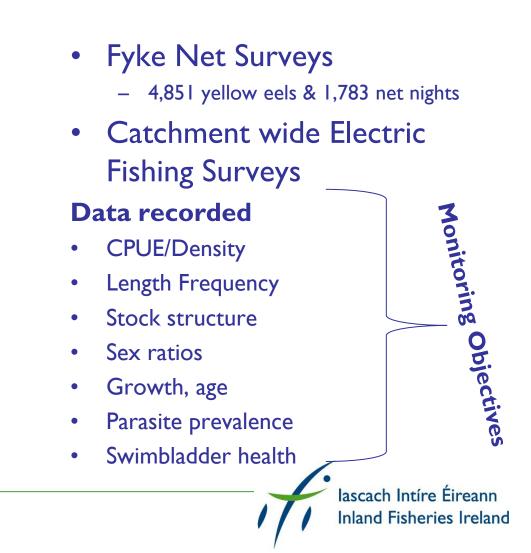
Yellow Eel Surveys

2009-2011 & 2012-2014


Yellow Eel Intensive Surveys 2012 - 2014

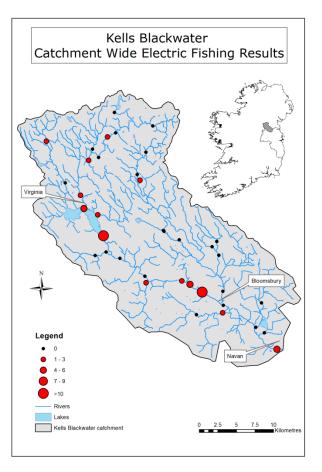
Eel Specific Intensive Standardised Fyke Net Surveys


Yellow Eel Intensive Surveys 2012 - 2014



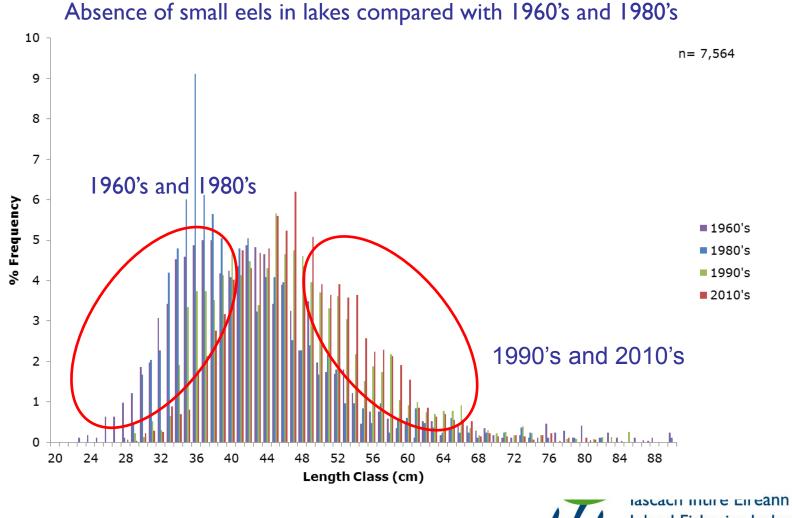
Eel Specific Electric Fishing Surveys




Yellow Eel Intensive Surveys 2012 - 2014

Catchment Wide Electric Fishing

Catchment Wide Electric Fishing


- 2 * Catchments with healthy eel populations within the Lake
 - Lough Muckno and Lough Ramor
- Eels were absent at
 - 60% of river sites in Kells Blackwater catchment
 - 62% of river sites in Fane catchment
 - Eels using the main channel on the way to lake and are not in the tributaries.
- Highlights the importance of Lake Habitat
- Fane eels have poor growth rates for first few years then a burst of growth as eels reach the lake
- Assume eels are everywhere but not the case!
- Repeat in Riverine catchment with no lake

Fyke Net Surveys: 2009 - 2011 & 2012 - 2014

Water Body	2009	2010	2011	2012	2013	2014	
Burrishoole		\checkmark	\checkmark				
Lower L. Derg			$\sqrt{*}$	$\sqrt{*}$	$\sqrt{*}$		
Upper L. Derg		\checkmark					
Upper Corrib		\checkmark					
Lower Corrib	\checkmark						
L. Cullen	\checkmark						
L. Conn	\checkmark						
Upper L. Erne		\checkmark					
L. Ree (Upr.&Lwr.)		\checkmark					
L. Oughter			\checkmark	\checkmark			
L. Ramor			\checkmark			\checkmark	
L. Inchiquin			\checkmark				
L. Ballynahinch			\checkmark				
L. Muckno				\checkmark	\checkmark	\checkmark	
L. Key					\checkmark		
Waterford Estuary	\checkmark		\checkmark				
Slaney Estuary		\checkmark					
South Sloblands		\checkmark				\checkmark	h
River Barrow				\checkmark	\checkmark	\checkmark	n F

Yellow Eel Stock Structure: - Lakes

Inland Fisheries Ireland

Yellow Eel Stock Structure: Transitional Waters

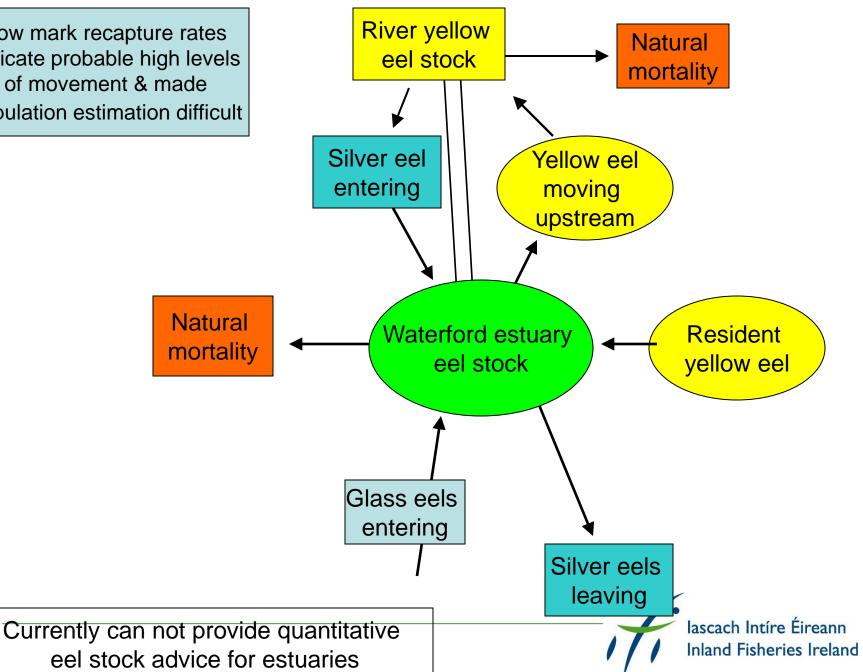
Small eels are present in the Transitional Waters in Southeast

Likely Response to recruitment & closure of fishery 10 n=984 9 2010's 8 7 % Frequency 6 1970's 5 1970's 4 2010's 3 2 1 0 48 52 56 60 64 68 72 76 80 84 88 20 24 28 32 36 40 44 Length Class (cm)

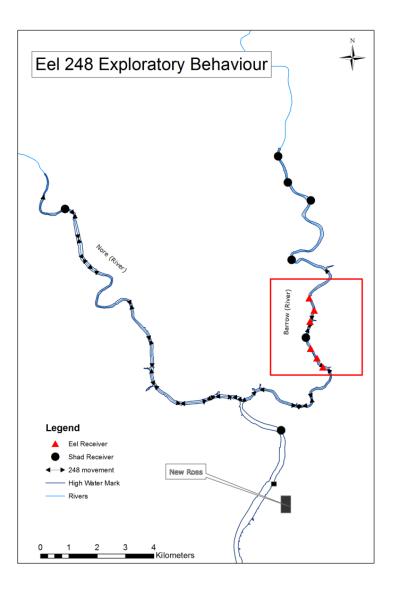
Iniano risneries Ireland

Éireann

Changes to Stock Structure


- Preliminary data;
- Future work will include focus on Index catchments in each EMU examining all life stages and water bodies to investigate the distribution of eels within a catchment and determine if there is a reduced distribution/spread of eels occurring.

Transitional Waters 2009-2012


- The transitional waters contained significantly smaller eels that the lakes.
- Highest CPUE values were recorded in the Barrow estuary.
- Low mark-recapture rates indicated probable high levels of movement within these waters and made population estimation difficult.
- Due to the difficulties in obtaining density estimates for eels in large water bodies and the migratory habits of eels moving upstream into the rivers and/or leaving the transitional water as silver eel,
 - it is still not possible to estimate silver eel production and escapement for transitional waters
- Historic eel biomass estimates are not available for the Waterford estuary to assess achievement of the eel escapement target
- The use of telemetry studies will give a clearer indication of the movement habits of eels in estuaries and improve population density estimates

Low mark recapture rates indicate probable high levels of movement & made population estimation difficult

Barrow Acoustic Survey - 2013 - 2014

- Majority of eels remained in the study site for duration of survey (red box on map)
- Site fidelity with foraging and outer exploratory behaviour
- Eel 248 undertook extensive exploratory behaviour ~ 17kms round trip to R. Nore and back
- Evidence of Home range 2-3kl

Eel Stock Assessment in Estuaries

- Waterford estuary survey has provided preliminary data on eel distribution and home range movement. Confirming a considerable resident standing stock.
- This will support future stock assessments and the development of a methodology for the assessment of silver eel output in estuaries
- Investigate the possibility, with partners across the EU, of novel stock assessment methods to improve quantifying stock density in estuaries,
- Continue to include WFD transitional water eel monitoring
- This work will support the development of an international standard method for eel stock assessment in tidal waters

Swimbladder Parasite - Anguillicola crassus

Swimbladder Parasite - Anguillicola crassus

Eel code CONN/YE/09/087 sampled on Lough Conn (Summer 2009). Female yellow eel, presenting with 34 adult parasites.

- Nematode worm, originates from Asia (1974)
- First recorded in Ireland in Waterford Estuary in 1997 (McCarthy et al., 1999)
 - later recorded on Lough Erne in 1998 (Evans & Matthews, 1999)
 - Prolific spread across Ireland
 - Currently occupies 74% of the wetted area in the Republic of Ireland (Becerra-Jurado et al., 2014)
 - High rates of infection and severe swimbladder damage
 - may represent a potential hindering effect to sto recovery (Palstra et al., 20007; SSCE, 2012).

Swimbladder Health Indices

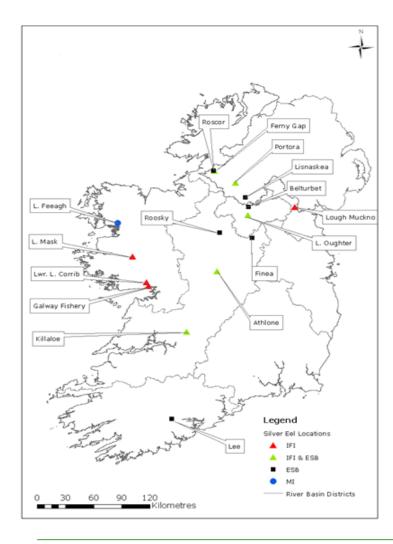
Swimbladder Degenerative Index (SDI) Lefebvre et al., 2002

- Qualitative index
- Scores swimbladders from 0-6
- Three parameters
 - Transparent / Opaque
 - Pigmentation / Exudate
 - Thickness of swimbladder wall (Molnár et al., 1994)

No severe damage noted in the swimbladders of Irish eels using either of these indices

Length Ratio Index (LRI) Palstra et al., 2007

- Quantitative index
- Shortening due to multiple infections
- Length of swimbladder divided by total body length of eel (assuming isometric growth relationship between


swimbladder length and total body length)
Scores from 0.00 to 0.20

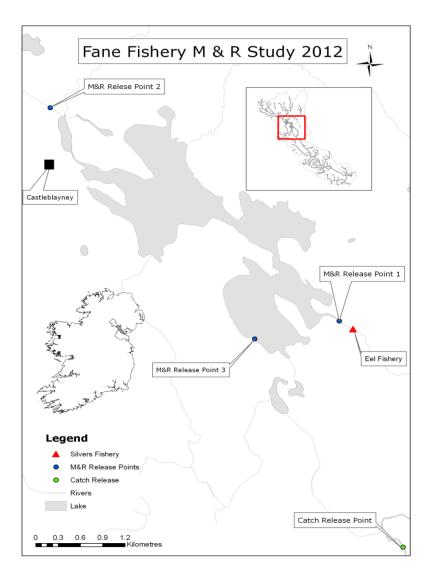
Lack of Severe Swimbladder Damage

The fact that no severe swimbladder damage has been recorded, may suggest that eels leaving Ireland, could contribute to the spawning stock to a greater degree than those leaving mainland Europe, as they may be more likely to successfully complete the long migration to their spawning grounds.

Silver Eel Escapement

Shannon Erne Burrishoole Corrib Fane Barrow 2009 - 2014 2010 - 2014 2009 - 2014 2009 2011 - 2014 2014 - pilot year

Mark & Recapture – Fane & Barrow



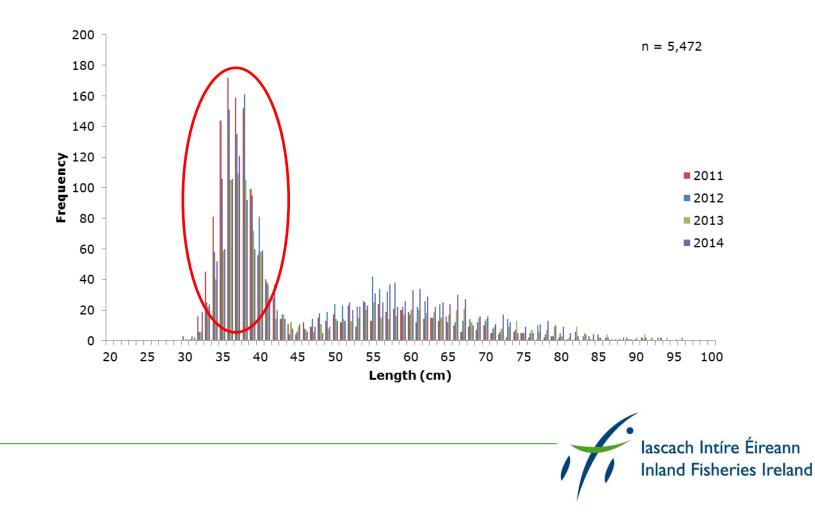
Silver Eels: Fane

Coghill net being lifted at Fane Silver Eel Site on Clarebane River.

Fane

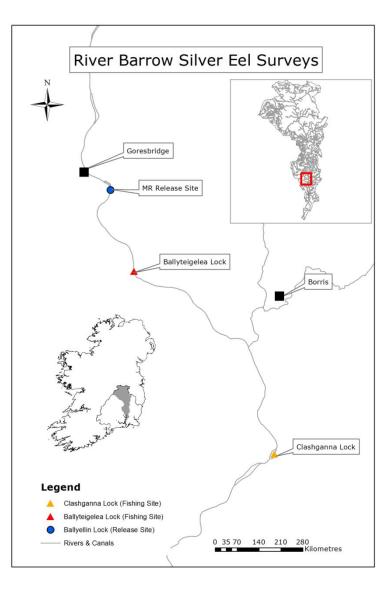
Table 3-6: Mark Recapture preliminary results 2011 - 2014.

-

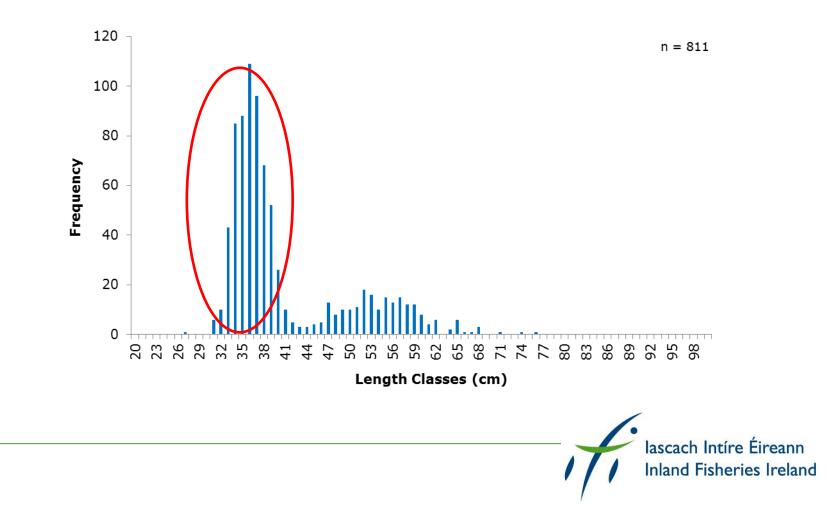

-

Location	Year	Tagged	Recaptured within Yr	within Yr MR %	Total Recapture	Overall MR %
u/s fishery	2012 470		34	8%	92	20%
River	2011	173	47	29%	57	33%
River	2012	286	26	10%	52	18%
Lake	2011	160	23	15%	34	21%
Lake	2012	119	8	8%	28	24%
Mouth River	2013	303	61	22%	91	30%
Mouth River	2014	272	80	29%		
	Average MR	% all loca	tions	18%		24%
	Average MR	% Mouth I	26%		30%	

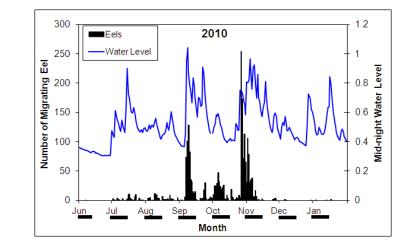
Silver Eels: Fane

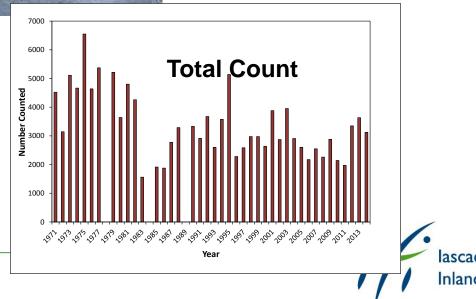

Dominated by male eels, Burrishoole, Shannon, Erne are female dominated

Silver Eels: Barrow



Ballyteige Lock, River Barrow, near Graignamanagh.


Silver Eels: Barrow


Dominated by male eels,

Burrishoole Silver eels

Overall Stock Structure

- Generally recruitment increased in 2013 & 2014 but remains sign below (20%) historic levels
- Between 2012 and 2014, some stocks exhibited relatively good densities of eel (high CPUE) and normal size structures. However, other areas have seen a considerable decline in numbers and a reduction in the proportion of small eel in the stock.
- Surveys in tidal waters in the south east have indicated relatively good densities of eel and high proportions of small size classes.
- The descriptions of the characteristics of the silver eel production vary considerably between catchments. This is likely to be a reflection of previous recruitment, stocking, and exploitation history.
- There is evidence in some areas of a density dependent shift towards fewer larger eels, indicative of a declining stock an observation hidden in the biomass data.

Purpose of Monitoring

- The monitoring programme provides data on cpue, length, ratio of male/female, stock structure, age, escapement etc. from index catchments & from transitional waters, to allow a wider assessment of data from data poor catchments.
- Which allows an eel production assessment models to be run, in conjunction with Shannon & Erne data
- Which allows assessment of River Basin District silver eel production and escapement in relation to the EU target

