National Research Survey Programme Lakes 2016

Parteen Basin (Lower Lough Derg)

IFI/2017/1-4351

Inland Fisheries Ireland

National Research Survey Programme

Fish Stock Survey of Parteen Basin (Lower Lough Derg),

June/July 2016

Abstract

CITATION: Kelly, F.L., Connor, L., McLoone, P., Morrissey, E., Kelly, K., Delanty, K., Coyne, J., Corcoran, W., Cierpial, D., Matson, R., Gordon, P., O' Briain, R., Rocks, K., O' Reilly, S., Kelly K., Puttharee, D., McWeeney, D., Robson S. and Buckley, S. (2017) Fish Stock Survey of Parteen Basin, June 2016. National Research Survey Programme, Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin 24.

Cover photo: Lough Derg © Inland Fisheries Ireland

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 3

1. Introduction 4
2. Methods 7
2.1 Netting 7
2.1.1 WFD+ 7
2.1.2 Eight panel braided survey gillnets (8-PBB) 7
2.1.3 Pelagic survey gillnetting 8
2.2.4 Fish handling 8
2.2 Hydroacoustic survey 10
2.3 Fish length frequency, age and growth 12
2.4 Water chemistry: 12
2.5 Fish diet 13
2.6 Biosecurity - disinfection and decontamination procedures 13
3. Results 14
3.1 Species Richness 14
3.2 Fish abundance 14
3.2.1 Percentage occurrence of fish species in the pelagic zone 17
3.2.2 Acoustic abundance of fish in the pelagic zone 18
3.3 Length frequency distributions, age and growth 18
3.4 Diet analysis 25
4. Summary 27
5. References 29

ACKNOWLEDGEMENTS

The authors wish to gratefully acknowledge the help and co-operation of all their colleagues in Inland Fisheries Ireland.

Inland Fisheries Ireland would like to acknowledge the funding provided for the project by Irish Water.

The authors would also like to acknowledge the funding provided for the project by the Department of Communications, Climate Action and Environment for 2016.

The report includes Ordnance Survey Ireland data reproduced under OSi Copyright Permit No. MP 007508.

Unauthorised reproduction infringes Ordnance Survey Ireland and Government of Ireland copyright. © Ordnance Survey Ireland, 2016.

1. Introduction

Parteen Basin (or Lower Lough Derg) is an artificial reservoir, located at the southern end of Lough Derg between Ballina/Killaloe and O' Brien's Bridge straddling the border of Counties Tipperary and Clare (Fig. 1.1). The reservoir is approximately 4.5 km in length, with a surface area of 360 Ha and maximum depth of 22 m . The lake is categorised as typology class 12 (as designated by the EPA for the purposes of the Water Framework Directive (WFD)), i.e. deep (>4m), greater than 50ha and high alkalinity (>100mg/l CaCO3).

The outflow from Lough Derg feeds into the River Shannon for approximately 3.5 km and then into Parteen basin. A large weir (known as Parteen weir) spans the width of the River Shannon at the lower end of the reservoir (Plate 1.1) and diverts the normal flow of the River Shannon into the 12 km long headrace canal to the 30 m high dam at Ardnacrusha Power Station (Fig. 1.1). The weir and reservoir were constructed in the 1920s as part of the Shannon hydroelectric scheme. The valley downstream of Killaloe was flooded by the construction of Parteen weir which controls the headrace canal to the generating station at Ardnacrusha (Moriarty, 1974). The weir has a ships pass built into it which allows ships/boats to enter or exit the headrace canal. The reservoir upstream of Parteen Weir is contained partly by two embankments - Ardclooney at the West and Fort Henry to the East. The water levels of the reservoir are controlled by the sluice barrage at Parteen Weir and at the power station at Ardnacrushna. Once through the turbines at Ardnacrusha the water from the tailrace canal flows rejoins the original River Shannon flow.

The reservoir lies within the upper section of the Lower River Shannon SAC (NPWS, 2013). The SAC is large, encompassing the Lower River Shannon and Shannon estuary, from Killaloe to Loop and Kerry Heads and has been selected for a large number of habitats and species listed on Annexes I and II of the EU Habitats Directive, such as Sea lamprey, Brook lamprey, River Lamprey and Atlantic salmon (NPWS, 2013).

Parteen Basin is one of sixteen lake water bodies that were designated as a heavily modified waterbody (i.e. a body of water which as a result of significant physical alterations by human activity, is substantially changed in character and cannot therefore meet good ecological status, e.g. dammed river) for Water Framework Directive purposes (South Western River Basin District Project, 2008).

Parteen Basin has been assigned an ecological status of Good in the 2010 to 2015 ecological classification of Irish lakes for the WFD (EPA, 2017).

The objectives of the 2016 fish stock survey on Parteen Basin were:

1. Determine the current status of the fish stocks in the reservoir
2. Carry out a hydroacoustic survey of the reservoir
3. Undertake an inter-calibration exercise between the WFD multi method approach (BM CEN, FM CEN, Fyke and 2-PBB) and the "modified" method established by IFI in the late 1970s to assess the status of brown trout in lakes (8-PBB).

This report summarises the results of the 2016 fish stock and hydroacoustic survey on Parteen Basin, while the inter-calibration results are presented in a separate report.

Plate 1.1: Parteen weir (photo taken from Parteen basin)

Plate 1.2. Parteen Basin (looking upstream towards Ballina/Killaloe)

2. Methods

A multi-method fish stock survey (various survey net types and hydroacoustics) was undertaken on Parteen Basin over two nights between the $29^{\text {th }}$ of June and the $1^{\text {st }}$ of July 2016. Three netting protocols (WFD+, eight panel braided and pelagic survey gillnetting) described below were used alongside the hydroacoustic survey of the pelagic zone.

2.1 Netting

2.1.1 WFD +

The WFD+ survey comprised a total of three Dutch fyke nets (Fyke), 21 benthic monofilament multimesh (12 panel, $5-55 \mathrm{~mm}$ mesh knot to knot) European standard survey gill nets (BM CEN) and four surface floating monofilament multi-mesh (FM CEN) (12 panel, 5-55mm mesh knot to knot, 1.5 mdepth) European standard survey gill nets were deployed in the lake (CEN, 2015). The netting effort was supplemented using three two-panel benthic braided (63.5 mm and 88.9 mm mesh knot to knot) survey gill nets (2-PBB). These latter survey nets were modified to include the 88.9 mm mesh panel (WFD+). Site locations were chosen randomly and a handheld GPS was used to mark the precise location of each net. The angle of each gill net in relation to the shoreline was also randomised.

2.1.2 Eight panel braided survey gillnets (8-PBB)

A total of five eight-panel benthic braided survey gill nets (8-PBB) were also deployed on the lake. These are composed of eight 27.5 m long panels each a different mesh size, tied together in a random order that was standard for each net. The panels ranged from 2" (25.4 mm mesh knot to knot) to 5 " 63.5 mm mesh knot to knot) in $0.5^{\prime \prime}$ (12.5 mm) increments (O^{\prime} Grady, 1981) with the addition of a 7" (88.9 mm mesh knot to knot) panel. Site locations were chosen randomly and a handheld GPS was used to mark the precise location of each net. The angle of each gill net in relation to the shoreline was also randomised.

2.1.3 Pelagic survey gillnetting

A further six pelagic multi-mesh (12 panel, $5-55 \mathrm{~mm}$ mesh knot to knot, 6 m depth) CEN standard survey gillnets were set in the deepest area of Parteen Basin at 6 m intervals from surface to lake floor (CEN, 2015) to examine the vertical distribution of fish. Additional pelagic nets were set at non-random locations along the basins longitudinal axis to examine the horizontal distribution of fish.

2.2.4 Fish handling

All fish apart from perch were measured and weighed on site and scales were removed from a subset of trout, roach, bream, hybrids and pike (five fish from each length range was sampled). The pelagic catch was sorted by net, mesh size and vertical distribution (per 1.5 m panel from float-line to lead-line). Each fish was numbered, identified, measured, weighed and scales were then taken from each fish, where possible, for ageing. Live fish were returned to the water whenever possible (i.e. when the likelihood of their survival was considered to be good). Samples of fish were returned to the laboratory for further analysis.

Fig. 1.1. Location map of Parteen Basin showing locations and depths of each net (outflow is indicated on map)

2.2 Hydroacoustic survey

Hydroacoustics (echo-sounding) technology sends a beam of sound into the water column and fish in the beam send back an echo. The location of the fish is determined by the time it takes for the echo to return and the size of the fish is estimated by how loud the returning echo is. Hydroacoustic technology provides minimum impact monitoring of fish populations. Pelagic survey gillnets were used to ground truth the hydroacoustic data.

A hydroacoustic survey was conducted on Parteen Basin between the hours of 04:31 and 05:36 on the night of the $14^{\text {th }}$ June 2016. The survey in accordance with the European standard (CEN, 2015) followed a systematic parallel transect design, had a total track length of 3.69 km and the degree of coverage had a co-efficient of variation (CV) of 0.12 (Fig. 2.2). Transects ranged in length from 144 m to 512 m with a mean length of 329 m. Each transect was considered an elementary sampling units (ESU).

A SIMRAD EY60 scientific echosounder was used; two vertical split-beam circular transducers (120kHz and 200 kHz) were deployed off the side of the boat at a depth of 0.5 m . Both transducers were calibrated using the appropriate standard copper sphere and the nominal 3dB beam angle of the transducers was 7°. Ping rate was set at 5 pings s ${ }^{-1}$, pulse duration was 0.256 ms . A differential GPS connected to the echosounder recorded the location and reported an average sailing speed of $7 \mathrm{~km} \mathrm{~h}^{-1}$ or $1.9 \mathrm{~m} \mathrm{~s}^{-1}$. Range sampled was 30 m ; transmitted power was 100 W for 120 kHz and 90 W for 200 kHz . Water temperature was constant from the surface to the bottom with a mean temperature of $16.5^{\circ} \mathrm{C}$. Mean water conductivity was $407 \mu \mathrm{~S} / \mathrm{cm}$.

Fig. 2.2. Location map of Parteen Basin showing the $\mathbf{6 m}$ contour line, all hydroacoustic tracks and pelagic survey gillnet locations.

2.3 Fish length frequency, age and growth

In addition to determining fish stock abundance and the collection of basic biometric data, stock assessments provide insight into the age profile and growth rates of the species captured. Determining age is an important tool in fisheries biology and stock management (Gursoy et al., 2005) and is analogous with the aging of trees through growth rings (Campana, 2001). In fish, growth patterns (fine ridges, known as circuli) visible on the scales, are used to infer age and growth rate. In temperate climates, rapid growth during the summer is evidenced by widely spaced circuli. In the winter, growth slows and circuli are more tightly banded. The outer edge of the tightly banded circuli, termed the annulus, marks the end of that season's growth (Ericksen, 1999). By counting these annuli the age of the fish can be estimated, while the growth rate of each fish can be inferred by back calculating length at age (Bagenal and Tesch, 1978). Generation of growth rate models also provides an insight into population life history such as life span and the average maximum attainable size of long lived individuals.

Three commonly utilised growth models (Von-Bertalanffy, Gompertz and Logistic) were fitted to the data in the FSA package (Ogle, 2016) in R (R Core Team, 2015). In this instance, Observed Length at Age (OLA) was used. The most appropriate model was chosen based on the Aikake Information Criterion (AIC) (the AIC is a measure of how each model fits a specific data set) and with regard to the observed length and age data derived from each survey, so that the most convincing model was chosen if AIC values were similar. Asymptotic length ($L \infty$) (defined as the average length of the very oldest fish in any population) can be viewed as the maximum predicted length for each species. It thus provides insights into the fishery potential of that particular species.

Length frequency, age and growth analysis was carried out on four species and on roach x bream hybrids

2.4 Water chemistry:

Dissolved oxygen ($\mathrm{mg} \mathrm{L}^{-1}$), temperature $\left(\mathrm{C}^{\circ}\right)$, pH and conductivity $\left(\mathrm{mS} \mathrm{cm}^{-1}\right.$) were recorded at 1 m intervals from the surface to 31m using a calibrated Hydrolab MS5 multi-parameter water quality sonde.

2.5 Fish diet

Fish were frozen before being dissected for stomach content analysis in the IFI laboratory. Total stomach contents were inspected and identified to the lowest taxonomic level possible. The percentage frequency occurrence (\%O) of prey items were then calculated to identify key prey items (Amundsen et al., 1996).

$$
\% \mathrm{O}_{\mathrm{ij}}=\left(\mathrm{N}_{\mathrm{ij}} / \mathrm{N}_{\mathrm{j}}\right) \times 100
$$

Where:
$\% \mathrm{O}_{\mathrm{ij}}$ is the percentage frequency occurrence of prey item i , in fish species j stomach,
N_{i} is the number of species j with prey i in their stomach,
N_{j} is total number of species j with stomach contents.

2.6 Biosecurity - disinfection and decontamination procedures

Procedures are required for disinfection of equipment in order to prevent dispersal of alien species and other organisms to uninfected waters. A standard operating procedure was compiled by Inland Fisheries Ireland for this purpose (Caffrey, 2010) and is followed by staff on IFI's National Research Survey Programme (NRSP) team when moving between water bodies.

3. Results

3.1 Species Richness

A total of six fish species and one type of hybrid were recorded during the fish stock survey (benthic and pelagic zones) on Parteen Basin in June/July 2016 (Table 3.1). Roach followed by perch were the most common fish species recorded (all survey nets). Roach and brown trout were the most common fish species captured in the pelagic zone (PM CEN) (Table 3.1). In total, 467 fish were captured during the survey (Table 3.1).

Table 3.1. Number of each fish species captured by each gear type during the main fish stock survey (WFD+ and 8-PBB) and the pelagic survey (PM CEN) on Parteen Basin, June/July 2016

Scientific name	Common name	WFD+	8-PBB	PM CEN	Total
Rutilus rutilus	Roach	62	134	42	$\mathbf{2 3 8}$
Perca fluviatilis	Perch	135	15	10	$\mathbf{1 6 0}$
Salmo trutta	Brown trout	1	1	20	$\mathbf{2 2}$
Esox lucius	Pike	15	2	0	$\mathbf{1 7}$
Rutilus rutilus x	Abramis brama	Roach x bream hybrid	2	4	6
Salmo salar	Salmon	0	0	1	$\mathbf{1 2}$
Anguilla anguilla	European eel	17	0	0	$\mathbf{1}$
Total		$\mathbf{2 3 2}$	$\mathbf{1 5 6}$	$\mathbf{7 9}$	$\mathbf{4 6 7}$

3.2 Fish abundance

Fish abundance (mean CPUE) and biomass (mean BPUE) were calculated as the mean number/weight of fish caught per metre of net. For all fish species except eel, CPUE/BPUE is based on all nets, whereas eel CPUE/BPUE is based on fyke nets only. Mean CPUE and BPUE for all fish species captured in the 2016 survey are summarised in Table 3.2 (Figs. 3.1 and 3.1).

Overall perch followed by roach were the dominant fish species in terms of abundance (CPUE), while roach was the dominant fish species in terms of biomass (BPUE) (Table 3.2, Figs. 3.1 and 3.2). Roach
followed by brown trout were the most abundant species (CPUE) in the pelagic zone, while roach and roach bream hybrids were dominant in terms of biomass (BPUE) (Table 3.2, Figs. 3.1 and 3.2).

Table 3.2. Mean (S.E.) CPUE and BPUE (per metre of net) for all fish species captured on Parteen Basin, WFD+, 8-PBB and PM CEN

Scientific name	Common name			
		WFD+	8-PBB	PM CEN
		Mean CPUE (\pm S.E.)		
Perca fluviatilis	Perch	1.666 (0.034)	0.014 (0.005)	0.014 (0.008)
Rutilus rutilus	Roach	0.077 (0.019)	0.122 (0.029)	0.058 (0.022)
Esox lucius	Pike	0.014 (0.006)	0.002 (0.001)	-
Rutilus rutilus x Abramis brama	Roach x bream hybrid	0.002 (0.002)	0.004 (0.004)	0.008 (0.003)
Salmo trutta	Brown trout	0.001 (0.001)	0.001 (0.001)	0.028 (0.009)
Salmo salar	Atlantic salmon	-	-	0.001 (0.001)
Anguilla Anguilla*	European eel*	0.142 (0.075)*	-	-
		Mean BPUE (\pm S.E.)		
Perca fluviatilis	Perch	5.871 (1.332)	2.095 (0.854)	0.655 (0.394)
Rutilus rutilus	Roach	20.006 (3.846)	37.648 (10.652)	11.159 (4.334)
Esox lucius	Pike	0.528 (0.320)	4.559 (3.898)	-
Rutilus rutilus x Abramis brama	Roach x bream hybrid	2.436 (1.691)	2.213 (2.213)	7.143 (3.204)
Salmo trutta	Brown trout	0.569 (0.569)	0.095 (0.095)	5.891 (2.185)
Salmo salar	Atlantic salmon	-	-	5.949 (5.949)
Anguilla Anguilla*	European eel*	25.397 (13.514) *	-	-

Note: On the rare occasion where biomass data was unavailable for an individual fish, this was determined from a length/weight regression for that species. *Eel CPUE and BPUE based on fyke nets only

Fig. 3.1. Mean (\pm S.E.) CPUE for all fish species captured in Parteen Basin (Eel CPUE based on fyke nets only), 2016

Fig. 3.2. Mean (\pm S.E.) BPUE for all fish species captured in Parteen Basin (Eel BPUE based on fyke nets only), 2016

3.2.1 Percentage occurrence of fish species in the pelagic zone

The percentage occurrence of roach, brown trout, perch, roach x bream hybrids and salmon in the pelagic zone was $53 \%, 25 \%, 13 \%, 8 \%$ and 1% respectively. The percentage occurrence of fish species in reservoir was also calculated for the small (5.3 to 10.0 cm), medium (10.0 to 20.0), large (20.0 to 33.0) and very large size (33.0 to 123 cm) classes respectively (Fig. 3.3).

Fig. 3.3. The percentage occurrence of all fish species captured in acoustic pelagic gillnets used to ground-truth Parteen Basin acoustic estimates

3.2.2 Acoustic abundance of fish in the pelagic zone

The total abundance of fish in the deeper areas (>6m; Fig. 2.2) of Parteen Basin was estimated as 13.31 fish ha^{-1} (Table 3.3). Estimates are not provided for individual species as the deep section available for hydroacoustic assessment was very narrow with high levels of variation therefore extrapolations at this scale would be erroneous.

Table 3.3. Arithmetic mean acoustic total fish abundance (fish/ha) and biomass (g / ha) for four fish sizes and total in the pelagic zone of Parteen Basin, June 2016

Size category	Small	Medium	Large	Very Large	Total
dB Range	-50 to -45dB	-44 to -39 dB	-39 to -35dB	-34 to -23dB	-50 to -23dB
Size class (cm)	5.3 to 10.0	10.0 to 20.0	20.0 to 33.0	33.0 to 123	4.5 to 123
Abundance (fish ha ${ }^{-1}$)					
Parteen Basin	5.23	3.58	0	4.50	13.31
Biomass (g ha ${ }^{-1}$)					
Parteen Basin	14.23	228.20	0	48,370.14	48,612.57

3.3 Length frequency distributions, age and growth

Perch

Perch captured during the 2016 survey ranged in length from 3.2 cm to 30.5 cm (mean $=12.8 \mathrm{~cm}$) (Fig.3.4). Perch in the pelagic zone ranged in length from 11.0 cm to 18.2 cm . Eight age classes were present, ranging from $1+$ to $8+$ and the mean L1 was 6.2 cm (Table 3.3). While recruitment was regular, modal peaks at $9-10 \mathrm{~cm}$ and $14-15 \mathrm{~cm}$ corresponding to $1+$ and $2+$ year classes indicated that the perch population were dominated by younger year classes. Asymptotic length was estimated as 25.3 cm (23.527.7) (Fig. 3.5).

Length (cm)

Fig. 3.4. Length frequency of perch captured on Parteen Basin, June/July2016

Table 3.3. Mean back calculated (\pm SE) perch length (cm) at age for Parteen Basin, June/July 2016

	L_{1}	L_{2}	L_{3}	L_{4}	L_{5}	L_{6}	L_{7}	L_{8}
Mean (\pm SE)	$6.2(0.1)$	$11.4(0.3)$	$15.6(0.5)$	$16.9(0.9)$	$19.6(1.0)$	$21.9(1.7)$	$24.3(2.4)$	23.4
N	43	35	22	6	5	4	3	1
Range	$4.3-7.8$	$7.6-14.5$	$11.2-20.2$	$14.2-19.2$	$16.2-21.9$	$18.0-25.5$	$21.3-29.1$	-

Age-length relationship for Perch in Parteen Basin (2016)

Fig. 3.5. Age-length relationship of perch captured on Parteen Basin, June/July 2016

Roach

Roach captured during the 2016 survey ranged in length from 6.0 cm to 33.3 cm (mean $=23.5 \mathrm{~cm}$) (Fig.3.6). Roach in the pelagic zone ranged in length from 14.0 cm to 29.7 cm . Seven age classes were present, from $1+$ to $12+$ and the mean L1 was 3.7 cm (Table 3.4). The dominant age class was $7+$ and fish captured in the survey were dominated by larger individuals (Fig. 3.6 and 3.7). The majority of fish aged were estimated to be between $3+$ and $7+$ years old. Just one older fish was recorded, which was estimated at $12+$ years old $(32.0 \mathrm{~cm}$ and 670.0 g$)$. Furthermore, no $2+$ fish were recorded in the sample aged, and, with the exception of one 6 cm individual, no roach less than 15 cm in length were recorded in the nets deployed. Asymptotic length was estimated as 35.4 cm (30.8-41.6).

Fig. 3.6. Length frequency of roach captured on Parteen Basin, June/July 2016

Table 3.4. Mean back calculated (\pm SE) roach length (cm) at age for Parteen Basin, June/July 2016

	\mathbf{L}_{1}	\mathbf{L}_{2}	\mathbf{L}_{3}	\mathbf{L}_{4}	\mathbf{L}_{5}	\mathbf{L}_{6}	\mathbf{L}_{7}	\mathbf{L}_{8}	\mathbf{L}_{9}	\mathbf{L}_{10}	\mathbf{L}_{11}	\mathbf{L}_{12}
Mean (\pm SE)	3.7	8.2	13.1	17.5	20.3	23.5	24.2					
	(0.1)	(0.3)	(0.4)	(0.5)	(0.5)	(0.5)	(1.8)	21.1	24.2	26.6	27.8	29.7
N	33	30	30	26	21	16	15	1	1	1	1	1
	$2.5-$	$5.7-$	$9.0-$	$11.7-$	$14.1-$	$17.6-$	$19.3-$	21.1	24.2	26.6	27.8	29.7
Range	5.3	11.8	16.9	21.2	23.8	26.7	28.2					

Age-length relationship for Roach in Parteen Reservoir (2016)

Fig. 3.7. Age-length relationship of roach captured on Parteen Basin, June/July 2016

Brown trout

Brown trout captured during the 2016 survey ranged in length from 13.5 cm to 47.2 cm (mean 23.6 cm) (Fig. 3.8). Only two brown trout were captured outside the pelagic zone and were measured at 19.5 cm and 33.0 cm . Three age classes were present, ranging from $1+$ to $3+$, with a mean L 1 of 6.8 cm (Table 3.5). The dominant age class was $2+$ (Fig. 3.8).

Fig. 3.8. Length frequency of brown trout captured on Parteen Basin, June/July 2016

Table 3.5. Mean back calculated (\pm S.E.) brown trout length (cm) at age for Parteen Basin, June/July 2016

	\mathbf{L}_{1}	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{L}_{\mathbf{3}}$
Mean (\pm S.E.)	$6.8(0.2)$	$15.1(0.6)$	$26.2(1.3)$
N	18	15	5
Range	$5.1-8.5$	$11.5-19.9$	$22.1-29.6$

Pike

Pike captured during the 2016 survey ranged in length from 8.5 cm to 78.0 cm (mean 20.8 cm) and the sample was dominated by juvenile fish (8.5 cm to 19.6 cm) (Fig. 3.9).

Fig. 3.9. Length frequency of pike captured on Parteen Basin, June/July 2016

Other fish

Eels captured during the 2016 survey ranged in length from 35.5 cm to 57.1 cm . Roach x bream hybrids ranged from 22.7 cm to 38.0 cm and one salmon was measured at 75.0 cm .

3.4 Diet analysis

Dietary analysis studies provide a good indication of the availability of food items and the angling methods that are likely to be successful. However, the value of stomach content analysis is limited unless undertaken over a long period as diet may change on a daily basis depending on the availability of food items. The stomach contents of a subsample of perch and pike captured during the survey were examined and are presented below.

Perch

Perch initially start to feed on pelagic zooplankton. Once they reach an intermediate size (approximately $14-16 \mathrm{~cm}$) they start feeding on benthic resources eventually moving on to feed on fish when they are large enough (Hjelm et al., 2000). A total of 36 stomachs were examined. Of these 11 were found to contain no prey items. Of the 25 stomachs containing food, 36% contained unidentified digested material, 32\% fish, 20\% invertebrates, 8\% zooplankton and 4\% zooplankton/invertebrates (Fig. 3.10).

Pike

A total of 14 pike stomachs were examined. Of these one was found to contain no prey items. Of the 13 stomachs containing food, 77% contained fish, 15% invertebrates and 8% fish/invertebrates (Fig. 3.11). Identifiable fish diet consisted of perch fry and stickleback. The smallest piscivore in the sample measured 8.5 cm .

Fig. 3.11. Diet of pike ($\mathrm{n}=13$) captured on Parteen Basin, June/July 2016 (\% occurrence)

4. Summary

Perch was the dominant fish species in terms of abundance (CPUE) and roach was the dominant fish species in terms of biomass (BPUE) captured in the 2016 survey gill nets.

The total abundance of fish in in the deeper areas ($>6 \mathrm{~m}$) of the reservoir was estimated as 13.31 fish ha
${ }^{1}$. Acoustic estimates were not calculated for individual species as the deep section available for hydroacoustic assessment was narrow with high levels of variation; therefore extrapolations at this scale would be erroneous. No pollan were captured in the ground truth pelagic survey nets; therefore it was not possible to confirm if pollan were present in the reservoir.

Perch ranged in length from 3.2 cm to 30.5 cm , with eight age classes present and ranged in age from $1+$ to $8+$, indicating reproductive success in eight of the previous nine years. The dominant age class was $1+$ and the population was dominated by younger fish in general. Of the 25 stomachs examined and containing food items 32% had fish present, followed by 20% invertebrates, 8% zooplankton and 4% zooplankton/invertebrates.

Roach ranged in length from 6.0 cm to 33.3 cm , with seven age classes present and ranged in age from $1+$ to $11+$, indicating reproductive success in seven of the previous twelve years. However, the dominant age class was 7+. Successful recruitment of roach in Parteen Basin would, therefore, appear to be irregular and limited in recent years. Whether this is due to natural or anthropogenic influences (i.e. fluctuating water levels in the reservoir) is unclear.

Brown trout ranged in length from 13.5 cm to 47.2 cm with three age classes present, ranging from $1+$ to $3+$, indicating reproductive success in three of the previous four years. The dominant age class was $2+$. Brown trout accounted for 25% of the total pelagic catch and there was a peak in abundance in the 1721 cm range which corresponds to $2+$ fish. It is possible that these trout were using Parteen Basin as a nursery habitat before migrating into the lake.

Pike ranged in length from 8.5 cm to 78.0 cm (mean 20.8 cm) and the sample was dominated by juvenile fish $(8.5 \mathrm{~cm}$ to 19.6 cm$)$. Many of these fish were captured in survey nets set on or near to large charophyte beds which were evident in the reservoir at the time of the survey. Recruitment success of this species has been found to be dependent upon the amount of submerged macrophytes in the
waterbody (Grimm, 1981). Interestingly, no small pike were recorded in the survey of Lough Derg conducted at the same time (Kelly et al., 2017). It is possible that Parteen Basin may play an important role in the recruitment success of pike in the lake as a whole. Further work would be needed elucidate the degree of its importance in this regard.

Previous studies in Ireland have suggested delayed piscivory in pike compared to other locations where this species is found (Pedreschi et al., 2015). However, most of the stomachs examined from Parteen Bain, contained fish prey even in the very small ($<12 \mathrm{~cm}$) young of year (YOY) pike captured. Many of the prey items were YOY perch fry (c.3cm in length) and small 3 -spined stickleback. This evidence suggests that pike may adopt a piscivorous habit when prey of a suitable size is readily available.

Classification and assigning lakes with an ecological status is a critical part of the WFD monitoring programme. It allows River Basin District managers to identify and prioritise lakes that currently fall short of the minimum "Good Ecological Status" that is required if Ireland is not to incur penalties.

A multimetric fish ecological classification tool (Fish in Lakes - 'FIL') was developed for the island of Ireland (Ecoregion 17) using IFI and Agri-Food and Biosciences Institute Northern Ireland (AFBINI) data generated during the NSSHARE Fish in Lakes project (Kelly et al., 2008). This tool was further developed during 2010 (FIL2) in order to make it fully WFD compliant, including producing EQR values for each lake and associated confidence in classification (Kelly et al., 2012). Using the FIL2 classification tool, Parteen Basin has been assigned an ecological status of Good based on the fish populations present in 2016.

In the 2010 to 2015 surveillance monitoring reporting period, the EPA assigned Parteen Basin an overall ecological status or potential of Good.

5. References

Amundsen P-A, Gabler H-M, Staldvik FJ. (1996) A new approach to graphical analysis of feeding strategy from stomach contents data-modification of the Costello (1990) method. Journal of Fish Biology, 48, 607-614.

Bagenal, T.B. and Tesch, F.W. (1978). Age and Growth, 101-136. Methods for Assessment of Fish Production in Freshwaters. Third edition. Blackwell Scientific. Publications. Oxford.

Caffrey, J. (2010) IFI Biosecurity Protocol for Field Survey Work. Inland Fisheries Ireland.

Campana, S.E. (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59, 197-242

CEN (2015) Water Quality - Sampling of Fish with Multi-Mesh Gill Nets. CEN EN 14757.

Ericksen, J.P. (1999) Scale aging for coastal cutthroat trout from Southeast Alaska. Alaska Department of Fish and Game, Special publication 99-4, Anchorage.

EPA (2017) Lake Water quality Status. www.catchments.ie accessed 27/4/2017
Grimm, M.P. (1981) The composition of northern pike (Esox lucius L.) populations in four shallow waters in the Netherlands, with special reference to factors influencing $0+$ pike biomass. Aquaculture Research, 12, 61-76.

Gursoy, C., Tarkan, A.S., Acipinar, H. and Gaygusuz, O. (2005) Validation of the scales for age determination in a Cyprinidae, Scardinius erythrophthalmus (L., 1758) International Journal of Zoology Research, 1, 33-36

Harrison, A.J., Kelly, F.L., Rosell, R.S., Champ, T.W.S., Connor, L. and Girvan, J.R. (2010) First record and initial hydroacoustic stock assessment of pollan Coregonus autumnalis Pallas in Lough Allen, Ireland. Biology and Environment: Proceedings of the Royal Irish Academy, 110B, 69-74.

Hjelm, J., Persson, L., and Christensen, B. (2000) Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oecologia, 122 (2), 190-199.

Kelly, F.L., Harrison, A., Connor, L., Allen, M., Rosell, R. and Champ, T. (2008) FISH IN LAKES Task 6.9: Classification tool for Fish in Lakes. FINAL REPORT. Central Fisheries Board, NS Share project.

Kelly, F., Harrison A., Connor, L., Matson, R., Morrissey, E., O’Callaghan, R., Wogerbauer, C., Feeney, R., Hanna, G. and Rocks, K. (2010) Sampling Fish for the Water Framework Directive - Summary Report 2009. The Central and Regional Fisheries Boards.

Kelly, F.L., Connor, L., McLoone, P., Morrissey, E., Kelly, K., Delanty, K., Coyne, J., Corcoran, W., Cierpial, D., Matson, R., Gordon, P., O’ Briain, R., Rocks, K., O' Reilly, S., Puttharee, D., McWeeney, D., Robson S. and Buckley, S. (2017) Fish Stock Survey of Lough Derg, June 2016. National Research Survey Programme, Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin 24.

Kelly, F.L., Harrison, A.J., Allen, M., Connor, L. and Rosell, R. (2012) Development and application of an ecological classification tool for fish in lakes in Ireland. Ecological Indicators, 18, 608-619.

Kennedy, M. and Fitzmaurice, P. (1971) Growth and Food of Brown Trout Salmo trutta (L.) in Irish Waters. Proceedings of the Royal Irish Academy, 71 (B) (18), 269-352.

Minchin D., Lucy F., and Sullivan M. (2002) Monitoring of zebra mussels in the Shannon-Boyle navigation, other navigable regions and principal Irish lakes, 2000 \& 2001. Marine Institute, Abbotstown, Dublin 15. ISSN: 1649-0053

Moriarty, C. (1974) Studies of the eel Anguilla anguilla in Ireland. 3. In the Shannon Catchment. Irish Fisheries Investigations, Series A (Freshwater), No. 14, 26pp.

NPWS (2004) Site Synopsis: Parteen Basin (Shannon) SPA. Site Code: 004058. Site Synopsis report, National Parks and Wildlife Service.

NPWS (2013) Lower River Shannon SAC. Site code 002165. Site Synopsis.

Ogle, D.H. (2016) FSA: Fisheries Stock Analysis. R package version 0.8.6.

O' Grady, M.F. (1981) A study of brown trout (Salmo trutta L.) populations in selected Irish lakes. Ph.D. Thesis, National University of Ireland.

O' Reilly P. (2007) Loughs of Ireland. A Flyfisher's Guide. $4^{\text {th }}$ edition. Merlin Unwin Books.

Pedreschi, D., Mariani, S., Coughlan, J., Voigt, C. C., O'Grady, M., Caffrey, J., \& Kelly-Quinn, M. (2015) Trophic flexibility and opportunism in pike Esox lucius. Journal of Fish Biology, 87: 876-894.

R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

South Western River Basin District Project (2008) Heavily Modified Water Bodies and Artificial Bodies. Overall summary report.

Available at: http://wfdireland.ie/docs/16 Heavily ModifiedAndArtificialWaterBodies/

Inland Fisheries Ireland 3044 Lake Drive,
Citywest Business Campus,
Dublin 24,
Ireland.
D24 Y265
www.fisheriesireland.ie info@fisheriesireland.ie
+35318842600

